Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parasitol ; 110(2): 143-149, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561014

RESUMO

Birds have a diverse community of "permanent" arthropods that complete their entire life cycle on the body of the host. Because some of these arthropods are parasites that reduce host fitness, birds control them by grooming, which consists of preening with the beak and scratching with the feet. Although preening is the primary component of grooming, scratching is essential for controlling arthropods on the head and neck, which cannot be preened. Several unrelated groups of birds have evolved comb-like pectinate claws on the middle toenail of each foot. We tested the role of these claws in the control of arthropods by experimentally removing teeth from the claws of captive western cattle egrets (Bubulcus ibis) infested with chewing lice (Insecta: Phthiraptera), feather mites (Acari: Sarcoptiformes), and nasal mites (Acari: Mesostigmata). After a period of 4 mo, we compared the abundance of arthropods on experimental birds to that of control birds with intact teeth. We used video to quantify the grooming rates of the captive birds, which groomed twice as much as wild birds. Experimental and control birds did not differ significantly in grooming time. Both groups virtually eradicated the chewing lice, but not feather mites or nasal mites. We found no support for the hypothesis that pectinate claws increase the efficiency of arthropod control by grooming. Experiments with wild birds are needed to test the hypothesis further under conditions in which birds devote less time to grooming.


Assuntos
Ácaros e Carrapatos , Artrópodes , Doenças das Aves , Infestações por Piolhos , Ftirápteros , Animais , Bovinos , Infestações por Piolhos/veterinária , Infestações por Piolhos/parasitologia , Asseio Animal , Doenças das Aves/parasitologia , Aves , Animais Selvagens
2.
Trends Biotechnol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493051

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) has become an integral part of the molecular biology toolkit. CRISPRa genetic screens are an exciting high-throughput means of identifying genes the upregulation of which is sufficient to elicit a given phenotype. Activation machinery is continually under development to achieve greater, more robust, and more consistent activation. In this review, we offer a succinct technological overview of available CRISPRa architectures and a comprehensive summary of pooled CRISPRa screens. Furthermore, we discuss contemporary applications of CRISPRa across broad fields of research, with the aim of presenting a view of exciting emerging applications for CRISPRa screening.

3.
PLoS Biol ; 21(2): e3001967, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757924

RESUMO

Although ACE2 is the primary receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, a systematic assessment of host factors that regulate binding to SARS-CoV-2 spike protein has not been described. Here, we use whole-genome CRISPR activation to identify host factors controlling cellular interactions with SARS-CoV-2. Our top hit was a TLR-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 spike binding where they form a cell surface complex. LRRC15 mRNA is expressed in human collagen-producing lung myofibroblasts and LRRC15 protein is induced in severe Coronavirus Disease 2019 (COVID-19) infection where it can be found lining the airways. Mechanistically, LRRC15 does not itself support SARS-CoV-2 infection, but fibroblasts expressing LRRC15 can suppress both pseudotyped and authentic SARS-CoV-2 infection in trans. Moreover, LRRC15 expression in fibroblasts suppresses collagen production and promotes expression of IFIT, OAS, and MX-family antiviral factors. Overall, LRRC15 is a novel SARS-CoV-2 spike-binding receptor that can help control viral load and regulate antiviral and antifibrotic transcriptional programs in the context of COVID-19 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/genética , Antivirais/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Fibroblastos/metabolismo , Ligação Proteica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
Ecol Evol ; 11(17): 12051-12063, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522360

RESUMO

Camera traps have become an extensively utilized tool in ecological research, but the manual processing of images created by a network of camera traps rapidly becomes an overwhelming task, even for small camera trap studies.We used transfer learning to create convolutional neural network (CNN) models for identification and classification. By utilizing a small dataset with an average of 275 labeled images per species class, the model was able to distinguish between species and remove false triggers.We trained the model to detect 17 object classes with individual species identification, reaching an accuracy up to 92% and an average F1 score of 85%. Previous studies have suggested the need for thousands of images of each object class to reach results comparable to those achieved by human observers; however, we show that such accuracy can be achieved with fewer images.With transfer learning and an ongoing camera trap study, a deep learning model can be successfully created by a small camera trap study. A generalizable model produced from an unbalanced class set can be utilized to extract trap events that can later be confirmed by human processors.

5.
Cells ; 9(11)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233861

RESUMO

Neurodegenerative diseases are characterized by irreversible cell damage, loss of neuronal cells and limited regeneration potential of the adult nervous system. Pluripotent stem cells are capable of differentiating into the multitude of cell types that compose the central and peripheral nervous systems and so have become the major focus of cell replacement therapies for the treatment of neurological disorders. Human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC)-derived cells have both been extensively studied as cell therapies in a wide range of neurodegenerative disease models in rodents and non-human primates, including Parkinson's disease, stroke, epilepsy, spinal cord injury, Alzheimer's disease, multiple sclerosis and pain. In this review, we discuss the latest progress made with stem cell therapies targeting these pathologies. We also evaluate the challenges in clinical application of human pluripotent stem cell (hPSC)-based therapies including risk of oncogenesis and tumor formation, immune rejection and difficulty in regeneration of the heterogeneous cell types composing the central nervous system.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Doenças Neurodegenerativas/terapia , Células-Tronco Pluripotentes/metabolismo , Animais , Humanos , Medicina Regenerativa
6.
Nat Commun ; 11(1): 1334, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170079

RESUMO

Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Éxons/genética , Vesículas Extracelulares/metabolismo , Nanopartículas/química , RNA Guia de Cinetoplastídeos/metabolismo , Sequência de Bases , Sobrevivência Celular , Dimerização , Edição de Genes , Vetores Genéticos/metabolismo , Células HEK293 , Protease de HIV/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ligantes , Luciferases/metabolismo , Splicing de RNA/genética , RNA Catalítico/metabolismo , Ribonucleoproteínas/metabolismo , Doadores de Tecidos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
7.
Nat Med ; 25(3): 427-432, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778238

RESUMO

Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the mdx mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Distrofia Muscular de Duchenne/terapia , Animais , Animais Recém-Nascidos , Sistemas CRISPR-Cas/imunologia , Dependovirus , Modelos Animais de Doenças , Distrofina/genética , Terapia Genética/métodos , Vetores Genéticos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética
8.
Front Neurosci ; 13: 1370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920521

RESUMO

Chronic pain afflicts as much as 50% of the population at any given time but our methods to address pain remain limited, ineffective and addictive. In order to develop new therapies an understanding of the mechanisms of painful sensitization is essential. We discuss here recent progress in the understanding of mechanisms underlying pain, and how these mechanisms are being targeted to produce modern, specific therapies for pain. Finally, we make recommendations for the next generation of targeted, effective, and safe pain therapies.

9.
Curr Opin Microbiol ; 38: 156-164, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28624690

RESUMO

Bacteria reside in externally accessible niches on and in multicellular organisms, often forming mutualistic relationships with their host. Recent studies have linked the composition of these microbial communities with alterations in the host's health, behavior, and development, yet the causative mediators of host-microbiota interactions remain poorly understood. Advances in understanding and engineering these interactions require the development of genetic tools to probe the molecular interactions driving the structure and function of microbial communities as well as their interactions with their host. This review discusses the current challenges to rendering culturable, non-model members of microbial communities genetically tractable - including overcoming barriers to DNA delivery, achieving predictable gene expression, and applying CRISPR-based tools - and details recent efforts to create generalized pipelines that simplify and expedite the tool-development process. We use the bacteria present in the human gastrointestinal tract as representative microbiota to illustrate some of the recent achievements and future opportunities for genetic tool development.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal , Genética Microbiana/métodos , Interações Hospedeiro-Patógeno , Biologia Molecular/métodos , Simbiose , Humanos
10.
Nucleic Acids Res ; 42(Database issue): D503-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24157837

RESUMO

Peptidases, their substrates and inhibitors are of great relevance to biology, medicine and biotechnology. The MEROPS database (http://merops.sanger.ac.uk) aims to fulfill the need for an integrated source of information about these. The database has hierarchical classifications in which homologous sets of peptidases and protein inhibitors are grouped into protein species, which are grouped into families, which are in turn grouped into clans. Recent developments include the following. A community annotation project has been instigated in which acknowledged experts are invited to contribute summaries for peptidases. Software has been written to provide an Internet-based data entry form. Contributors are acknowledged on the relevant web page. A new display showing the intron/exon structures of eukaryote peptidase genes and the phasing of the junctions has been implemented. It is now possible to filter the list of peptidases from a completely sequenced bacterial genome for a particular strain of the organism. The MEROPS filing pipeline has been altered to circumvent the restrictions imposed on non-interactive blastp searches, and a HMMER search using specially generated alignments to maximize the distribution of organisms returned in the search results has been added.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases/classificação , Inibidores de Proteases/classificação , Bactérias/enzimologia , Éxons , Internet , Íntrons , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Inibidores de Proteases/química , Proteólise , Alinhamento de Sequência
11.
Nature ; 476(7359): 214-9, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21833088

RESUMO

Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.


Assuntos
Predisposição Genética para Doença/genética , Imunidade Celular/imunologia , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Alelos , Diferenciação Celular/imunologia , Europa (Continente)/etnologia , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Antígenos HLA-A/genética , Antígenos HLA-DR/genética , Cadeias HLA-DRB1 , Humanos , Imunidade Celular/genética , Complexo Principal de Histocompatibilidade/genética , Polimorfismo de Nucleotídeo Único/genética , Tamanho da Amostra , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia
12.
Hum Mol Genet ; 19(4): 707-19, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933168

RESUMO

We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk.


Assuntos
Variação Genética , Antígenos HLA/genética , Escleroderma Sistêmico/genética , Antígenos HLA/química , Antígenos HLA-DR/química , Antígenos HLA-DR/genética , Cadeias HLA-DRB1 , Humanos , Conformação Molecular
13.
Pac Symp Biocomput ; : 359-70, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19908388

RESUMO

The immune response HLA class II DRB1 gene provides the major genetic contribution to Juvenile Idiopathic Arthritis (JIA), with a hierarchy of predisposing through intermediate to protective effects. With JIA, and the many other HLA associated diseases, it is difficult to identify the combinations of biologically relevant amino acid (AA) residues directly involved in disease due to the high level of HLA polymorphism, the pattern of AA variability, including varying degrees of linkage disequilibrium (LD), and the fact that most HLA variation occurs at functionally important sites. In a subset of JIA patients with the clinical phenotype oligoarticular-persistent (OP), we have applied a recently developed novel approach to genetic association analyses with genes/proteins sub-divided into biologically relevant smaller sequence features (SFs), and their "alleles" which are called variant types (VTs). With SFVT analysis, association tests are performed on variation at biologically relevant SFs based on structural (e.g., beta-strand 1) and functional (e.g., peptide binding site) features of the protein. We have extended the SFVT analysis pipeline to additionally include pairwise comparisons of DRB1 alleles within serogroup classes, our extension of the Salamon Unique Combinations algorithm, and LD patterns of AA variability to evaluate the SFVT results; all of which contributed additional complementary information. With JIA-OP, we identified a set of single AA SFs, and SFs in which they occur, particularly pockets of the peptide binding site, that account for the major disease risk attributable to HLA DRB1. These are (in numeric order): AAs 13 (pockets 4 and 6), 37 and 57 (both pocket 9), 67 (pocket 7), 74 (pocket 4), and 86 (pocket 1), and to a lesser extent 30 (pockets 6 and 7) and 71 (pockets 4, 5, and 7).


Assuntos
Artrite Juvenil/genética , Artrite Juvenil/imunologia , Cadeias HLA-DRB1/genética , Estudos de Casos e Controles , Criança , Biologia Computacional , Frequência do Gene , Estudos de Associação Genética/estatística & dados numéricos , Predisposição Genética para Doença , Variação Genética , Cadeias HLA-DRB1/química , Haplótipos , Humanos , Desequilíbrio de Ligação
14.
Nucleic Acids Res ; 37(Database issue): D1013-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18838392

RESUMO

It is 10 years since the IMGT/HLA database was released, providing the HLA community with a searchable repository of highly curated HLA sequences. The HLA complex is located within the 6p21.3 region of human chromosome 6 and contains more than 220 genes of diverse function. Many of the genes encode proteins of the immune system and are highly polymorphic. The naming of these HLA genes and alleles, and their quality control is the responsibility of the WHO Nomenclature Committee for Factors of the HLA System. Through the work of the HLA Informatics Group and in collaboration with the European Bioinformatics Institute, we are able to provide public access to this data through the website http://www.ebi.ac.uk/imgt/hla/. The first release contained 964 sequences, the most recent release 3300 sequences, with around 450 new sequences been added each year. The tools provided on the website have been updated to allow more complex alignments, which include genomic sequence data, as well as the development of tools for probe and primer design and the inclusion of data from the HLA Dictionary. Regular updates to the website ensure that new and confirmatory sequences are dispersed to the HLA community, and the wider research and clinical communities.


Assuntos
Alelos , Bases de Dados de Ácidos Nucleicos , Antígenos HLA/genética , Humanos , Polimorfismo Genético
15.
Hum Mutat ; 27(12): 1192-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16944494

RESUMO

The IMGT/HLA database (www.ebi.ac.uk/imgt/hla) has provided a centralized repository for the sequences of the alleles named by the WHO Nomenclature Committee for Factors of the HLA System since 1998. Since its initial release, the database has rapidly grown in size and is recognized as the primary source of information for the study of sequences of the human major histocompatibility complex. The Immuno Polymorphism Database (IPD; www.ebi.ac.uk/ipd) is a set of specialist databases related to the study of polymorphic genes in the immune system. The IPD currently consists of four databases: IPD-KIR contains the allelic sequences of killer-cell immunoglobulin-like receptors; IPD-MHC is a database of sequences of the major histocompatibility complex of different species; IPD-HPA contains alloantigens expressed only on platelets (human platelet antigens or HPA); and IPD-ESTDAB provides access to the European Searchable Tumour Cell-Line Database, a cell bank of immunologically characterized melanoma cell lines.


Assuntos
Bases de Dados Genéticas , Antígenos HLA/classificação , Complexo Principal de Histocompatibilidade , Alelos , Antígenos de Plaquetas Humanas/genética , Sequência de Bases , Antígenos HLA/genética , Humanos , Complexo Principal de Histocompatibilidade/genética , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
16.
Immunogenetics ; 57(12): 953-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16389556

RESUMO

Nomenclature for Major Histocompatibility Complex (MHC) genes and alleles in species other than humans and mice has historically been overseen either informally by groups generating sequences, or by formal nomenclature committees set up by the International Society for Animal Genetics (ISAG). The suggestion for a Comparative MHC Nomenclature Committee was made at the ISAG meeting held in Göttingen, Germany (2002), and the committee met for the first time at the Institute for Animal Health, Compton, UK in January 2003. To publicize its activity and extend its scope, the committee organized a workshop at the International Veterinary Immunology Symposium (IVIS) in Quebec (2004) where it was decided to affiliate with the Veterinary Immunology Committee (VIC) of the International Union of Immunological Societies (IUIS). The goals of the committee are to establish a common framework and guidelines for MHC nomenclature in any species; to demonstrate this in the form of a database that will ensure that in the future, researchers can easily access a source of validated MHC sequences for any species; to facilitate discussion on this area between existing groups and nomenclature committees. A further meeting of the committee was held in September 2005 in Glasgow, UK. This was attended by most of the existing committee members with some additional invited participants (Table 1). The aims of this meeting were to facilitate the inclusion of new species onto the database, to discuss extension, improvement and funding of the database, and to address a number of nomenclature issues raised at the previous workshop.


Assuntos
Complexo Principal de Histocompatibilidade , Terminologia como Assunto , Comitês Consultivos , Animais , Galinhas/genética , Galinhas/imunologia , Bases de Dados Genéticas , Peixes/genética , Peixes/imunologia , Cavalos/genética , Cavalos/imunologia , Agências Internacionais , Polimorfismo Genético , Ovinos/genética , Ovinos/imunologia , Sociedades Científicas
17.
Nucleic Acids Res ; 33(Database issue): D523-6, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15608253

RESUMO

The Immuno Polymorphism Database (IPD) (http://www.ebi.ac.uk/ipd/) is a set of specialist databases related to the study of polymorphic genes in the immune system. IPD currently consists of four databases: IPD-KIR, contains the allelic sequences of Killer-cell Immunoglobulin-like Receptors; IPD-MHC, a database of sequences of the Major Histocompatibility Complex of different species; IPD-HPA, alloantigens expressed only on platelets; and IPD-ESTAB, which provides access to the European Searchable Tumour Cell-Line Database, a cell bank of immunologically characterized melanoma cell lines. The IPD project works with specialist groups or nomenclature committees who provide and curate individual sections before they are submitted to IPD for online publication. The IPD project stores all the data in a set of related databases. Those sections with similar data, such as IPD-KIR and IPD-MHC share the same database structure. The sharing of a common database structure makes it easier to implement common tools for data submission and retrieval. The data are currently available online from the website and ftp directory; files will also be made available in different formats to download from the website and ftp server. The data will also be included in SRS, BLAST and FASTA search engines at the European Bioinformatics Institute.


Assuntos
Bases de Dados Genéticas , Imunogenética , Polimorfismo Genético , Animais , Antígenos de Plaquetas Humanas/genética , Linhagem Celular Tumoral , Sistemas de Gerenciamento de Base de Dados , Humanos , Complexo Principal de Histocompatibilidade , Melanoma/imunologia , Receptores Imunológicos/genética , Receptores KIR , Alinhamento de Sequência , Integração de Sistemas
18.
Nucleic Acids Res ; 31(1): 311-4, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12520010

RESUMO

The IMGT/HLA database (http://www.ebi.ac.uk/imgt/hla) has provided a centralized repository for the sequences of the alleles named by the WHO Nomenclature Committee for Factors of the HLA System for the past four years. Since its initial release the database has grown and is the primary source of information for the study of sequences of the human major histocompatibilty complex. The initial release of the database contained a limited number of tools. As a result of feedback from our users and developments in HLA we have been able to provide new tools and facilities. The HLA sequences have also been extended to include intron sequences and the 3' and 5' untranslated regions in the alignments and also the inclusion of new genes such as MICA. The IMGT/MHC database (http://www.ebi.ac.uk/imgt/mhc) was released in March 2002 to provide a similar resource for other species. The first release of IMGT/MHC contains the sequences of non-human primates (apes, new and old world monkeys), canines and feline sequences. Further species will be added shortly and the database aims to become the primary source of MHC data for non-human sequences.


Assuntos
Bases de Dados Genéticas , Antígenos de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Gatos , Cães , Antígenos de Histocompatibilidade/química , Humanos , Primatas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...